A scorpion alpha-like toxin that is active on insects and mammals reveals an unexpected specificity and distribution of sodium channel subtypes in rat brain neurons.
نویسندگان
چکیده
Several scorpion toxins have been shown to exert their neurotoxic effects by a direct interaction with voltage-dependent sodium channels. Both classical scorpion alpha-toxins such as Lqh II from Leiurus quiquestratus hebraeus and alpha-like toxins as toxin III from the same scorpion (Lqh III) competitively interact for binding on receptor site 3 of insect sodium channels. Conversely, Lqh III, which is highly toxic in mammalian brain, reveals no specific binding to sodium channels of rat brain synaptosomes and displaces the binding of Lqh II only at high concentration. The contrast between the low-affinity interaction and the high toxicity of Lqh III indicates that Lqh III binding sites distinct from those present in synaptosomes must exist in the brain. In agreement, electrophysiological experiments performed on acute rat hippocampal slices revealed that Lqh III strongly affects the inactivation of voltage-gated sodium channels recorded either in current or voltage clamp, whereas Lqh II had weak, or no, effects. In contrast, Lqh III had no effect on cultured embryonic chick central neurons and on sodium channels from rat brain IIA and beta1 subunits reconstituted in Xenopus oocytes, whereas sea anemone toxin ATXII and Lqh II were very active. These data indicate that the alpha-like toxin Lqh III displays a surprising subtype specificity, reveals the presence of a new, distinct sodium channel insensitive to Lqh II, and highlights the differences in distribution of channel expression in the CNS. This toxin may constitute a valuable tool for the investigation of mammalian brain function.
منابع مشابه
The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملMolecular Characterization of a Three-disulfide Bridges Beta-like Neurotoxin from Androctonus crassicauda Scorpion Venom
Scorpion venom is the richest source of peptide toxins with high levels of specific interactions with different ion-channel membrane proteins. The present study involved the amplification and sequencing of a 310-bp cDNA fragment encoding a beta-like neurotoxin active on sodium ion-channel from the venom glands of scorpion Androctonus crassicauda belonging to the Buthidae family using r...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملCharacterization of cDNA sequence encoding for a novel sodium channel -toxin from the Iranian scorpion Mesobuthus eupeus venom glands
The venoms of Buthidae scorpions are known to contain basic, single-chain protein -toxins consisting of 60-70 amino acid residues that are tightly cross-linked by four disulfide bridges. Total RNA was extracted from the venom glands of scorpion Mesobuthus eupeus collected from the Khuzestan province of Iran and then cDNA was synthesized with the modified oligo (dT) primer and extracted total R...
متن کاملThe correlation between Na+ channel subunits and scorpion toxin-binding sites. A study in rat brain synaptosomes and in brain neurons developing in vitro.
Photoreactive derivatives of alpha- and beta-scorpion toxins have been used to analyze the subunit composition of Na+ channels in rat brain. In synaptosomes, both types of toxins preferentially labeled (greater than 85%) a component of 34,000 Da and, at a lower level, another component of 300,000 Da. Reduction of disulfide bridges shifted this latter band from 300,000 Da to 272,000 Da but did n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 20 شماره
صفحات -
تاریخ انتشار 1999